Realistic and Fast Cloud Rendering

Niniane Wang
Microsoft Corporation (now at Google Inc.)
niniane@ofb.net

November 11, 2003

Abstract

Clouds are an important aspect of rendering outdoor scefeis. paper de-
scribes a cloud system that extends texture splatting diclesrto model a dozen
cloud types (e.g., stratus, cumulus congestus, cumularnian improvement
over earlier systems that modeled only one type of cumulusaMb achieve fast
real-time rendering, even for scenes of dense overcastagewhich was a lim-
itation for previous systems.

We present a new shading model that uses artist-drivenatemither than a
programmatic approach to approximate lighting. This itadalé when fine-grained
control over the look-and-feel is necessary, and artissources are available. We

also introduce a way to simulate cloud formation and dig®pausing texture
splatted particles.

1 Introduction

Figure 1: Scene of realistic clouds at sunset.

Clouds play an important role in simulating outdoor envir@mts. Realistic-looking
clouds can be one of the most compelling graphical compsredmutdoor scenes, es-
pecially for real-world applications such as flight simolatand movie productions.

In interactive real-world applications, cloud systems tiogk realistic from any
camera position and must scale to handle the wide spectratowd types (e.g., stratus,
cumulus congestus) and coverages (e.g., sparse, brokertast) that exist in real
life. For example, our cloud system ships with MicrosofighRli Simulator 2004: A
Century of Flight, which allows users to download real-wlosleather and see current
conditions reflected in the game graphics. One design @nstn our system was
that it must yield high-quality results for all scenarioattbccur in the real world, from
wispy stratus clouds to overcast thunderstorm skies.

To be useful for practical interactive applications, ousteyn must maintain ag-
gressive performance. Using Flight Simulator as an exantbte game operates at
high framerates while performing computations for numsrsystems besides cloud
rendering, such as physics, Al, and terrain rendering. &fbeg, our cloud modeling
must maintain low render times of milliseconds. Additidpat must achieve fast per-
formance even on low-end PCs, which represent the hardwargraints for a large
percentage of the user base.

The appearance of clouds is affected by the light cast byuheaad filtered from
the sky, which must be reflected in the cloud shading. Ouesysargets applications
that require fine-grained control over the look-and-fedllave artistic resources avail-
able, such as movie productions and computer games.

In the real world, clouds do not remain static. They move sefte sky, form
in areas of moisture and unstable air, and dissipate whese tbenditions abate. To
simulate these changes, our cloud rendering method musidim@ mechanism for
forming and dissipating clouds in a realistic manner oveeti

In this paper, we present a cloud rendering system that ssieseall of the above.
We use texture splatting on particles to create "puffs” ia thoud, which allows us
to model a dozen cloud types such as nimbostratus and altdaapan improvement
over previous systems that modeled one type of cumulus clgduse an octagonal
ring of impostors to achieve fast performance, even foras@f dense overcast cloud
cover, which have traditionally proven to be a challengeapproximate sky and sun
light, we use a simple efficient shading model. Finally, oppraach allows us to
dynamically evolve the cloud into existence or fade paris afvay.

Section 2 reviews the background and previous work. Se8taescribes our tech-
nique, and section 4 explains how our system dynamicalim$oand dissipates clouds.
Section 5 covers our shading methods, and section 6 prgeafitsmance metrics and
results. Section 7 describes our experiences, algorittmitations, and directions for
future work.

A short video demonstrating the cloud system is availabl@emt the web address
listed at the end of this paper.

2 PreviousWork

Many techniques have been used to model, animate, and relndes.

[Per85] modeled cloud volumes by filling them with procedwaid noise tech-
niques, and [ES00] extended this to model clouds in read-tising textured ellipsoids.
[DKY T00] used metaballs — also called blobs — to realistically elatbud shapes
based on atmospheric conditions. With programmatic aghes it is often difficult
to achieve an exact desired result, as the creation provesivés tweaking equation
parameters rather than directly adjusting the visual model

To create clouds that change dynamically, [DNYO99] usecelowith forms of
cellular automata. [Ebe97] combined volume rendering abdfer rendering tech-
niques to animate gaseous phenomena based on turbulentTwge systems pro-
duced beautiful images but were not real-time.

Shading has also been explored in various systems. [Blig2jgered work on
cloud shading by introducing a single scattering model gifitlireflected by uniform
small particles. [NDN96, Har03] simulated multiple anregic scattering of light
from particles in the cloud as well as sky light. These systeneated accurate shad-
ing. When designing our system, we made the tradeoff of ditmepmall shading
inaccuracies in exchange for fewer computations and higtiistic control.

Many flight simulation games feature clouds. Recent exasngte Flight Simu-
lator 2002, IL-2 Sturmovik, and Combat Flight Simulator. llth games, a common
approach is to paint clouds onto the skybox texture. Thisgdalmost no overhead
on performance but the clouds do not look three-dimensiandinever get closer as
the camera moves. Another solution is to use a single spetelpud, which looks
realistic from a stationary camera but produces anomaditissacamera rotates around
it. A couple of recent approaches use clusters of texturttspl particles similar to
our system. Some use unique textures for every cloud, whdslathigh video memory
cost as the number of clouds in the scene increases. Otltens/gse small blurry tex-
tures, which creates clouds that look volumetric but ladniteon (small details that
resemble wisps and eddies). These systems also lack tlitg &dofiorm and dissipate
clouds.

Our work is most closely related to [HLO1, Har03], a realdisystem that built
volumetric clouds from texture splatted particles, withraform Gaussian blob tex-
ture. Harris internalciteHarris:2003 dynamically genedsan impostor for each cloud,
and achieved framerates of 1 - 500 frames per second. Thensydso modeled the
fluid motion and thermodynamic forces behind cloud aninmati®ur system differs
in that we can render large clouds such as cumulonimbus, hssvecenes of over-
cast clouds, which had prohibitively high video memory sdetHarris internalcite-
Harris:2003’s system, since large clouds require largeostgrs. We also tackle the
additional problem of scaling to multiple cloud types.

3 Cloud Modeling

Our cloud rendering technique renders each cloud as 5 to b@-alended tex-
tured sprites. The sprites face the camera during rendanidgogether comprise a
3-dimensional volume. We render them back-to-front basedistance to the camera.

Figure 2: Frontal view of a single cloud with sprites outtine

3.1 Cloud Creation Process

We designed our authoring process to give artists fine-gdagontrol over the final
look of the cloud model, with immediate visual feedback dgréditing. We chose not
to use a more automated approach to programmatically gertbeacloud models, as
our experiences with them indicated that getting a padicdésired effect was difficult
since it involved tweaking parameters in equations wholecebn the visual model
was less directly controllable. Our choice requires thelalbvéity of artists, which is
true for our applications such as games and movie prodisction

We wrote a plug-in to 3D Studio Max that allows artists to dena cloud shape
by creating and placing a series of boxes. When they presgentin our plug-in Ul,
the plug-in populates the boxes with randomly placed spriteee Figures 3 and 4.
The artist can control the number of sprites to create desrsgispier clouds. He also
specifies ranges for the width and height of the sprites. éncthuds we created, the
majority of sprites are square, though we used some widet spotes to create hazy
areas since their texture gets stretched horizontally.

There are generally 20 — 200 boxes for each 16 square kilosmtdon of clouds,
and 1 — 100 sprites per box depending on the cloud density.UTladlows the artist
to specify the aforementioned sprite dimensions and dgmditng with the textures to
use and other cloud properties.

After creating a list of randomly placed sprite centers, tin@ traverses the list
and eliminates any sprite whose 3-D distance to anotheedpriess than a threshold
value. This reduces overdraw in the final rendering, and elsoinates redundant
sprites created from overlapping boxes. We have found tlcatlaadius of% of the
sprite height works well for typical clouds, ar%d.. % of the sprite height yields dense
clouds.

After the artist edits the clouds, he uses a custom writtgqoegr to create a bi-
nary file containing the sprite center locations, rotatjavidth, and height, along with
texture and shading information. These files are loadechdugame execution and
rendered.

Figure 3: Boxes in 3D Studio Max representing a square regfictouds.

3.2 Textures

We mix-and-match 16 textures to create a dozen distinctdctppes. Three of our
cloud types can be seen in Figure 5.

The 16 textures can be seen in Figure 6. They are 32-bit, auifos both color
and alpha. The flat-bottomed texture in the upper righthander is used to create flat
bottoms in cumulus clouds. The three foggy textures in thedw are used heavily in
stratus clouds and have a subtle bluish-grey tinge. Theusfy fextures in the bottom
two rows give interesting nuances to cumulus clouds, andeifmaining six are wispy
sprites that are used across all cloud types.

By creating interesting features inside the textures txsgmble eddies and wisps,
we are able to create more realistic looking clouds with fespites. We keep the
video memory cost low by placing all 16 textures on a singl2x%l2 texture sheet,
which spares the cost of switching textures between drawdtlg to the video card.
Economizing video memory is important for performance on-end PCs running
video cards with 8 or 16 megabytes of memory, and we achieign#isantly lower
cost as compared to other cloud systems which use a differemie for every cloud.

To create more variation from these 16 textures, the apgetifies a minimum and
maximum range of rotation for each sprite. When the binagyifilloaded into the
game, the sprite is given a random rotation within the range. have found that it
looks best to give the cumulus cloud bottoms a narrow rargyeo(5 degrees) and alll
other sprites the full range of rotation (0 to 360 degree®.d&/not apply a rotation to
non-square sprites.

3.3 In-cloud Experience

Our approach generates a natural in-cloud experience viheamera appears to be
passing through puffs of the cloud. As the camera passesghra sprite, the sprite
immediately disappears from view. This ceates a consistealbud experience, in

Figure 4: After running our script, the boxes from Figure 8 filfed in with textured
sprites.

contrast to the sometimes jarring transition that occuth thie technique of playing a
canned animation when the user flies into the cloud.

When we first implemented our solution, we had the spriteagdface the camera
so that they would not be seen edge-on. However, during telird experience, the
camera was so close to the sprite center that small movernmetiits camera position
caused large rotations of the cloud sprite. This resultead’iparting of the Red Sea”
effect as sprites moved out of the way of the oncoming camera.

Our solution is to lock the facing angle of the sprite whendamera comes within
half of the sprite radius. This removes the Red Sea effett;imates a new problem
when the camera moves close to the sprite, causing it to otk then pivots around
until the sprite can be seen edge-on. We experimented witittileg this situation and
shifting the sprite to a new locked orientation, but it cauaenoticeable jump right
as the user passes through the sprite. Our solution is totdaeeangle between the
sprite’s locked orientation and the vector to the camerd, adjust the transparency
of the sprite, which also produces the side effect of makivag section of the cloud
appear less opaque.

4 Cloud Formation and Dissipation

Enabling the formation and dissipation of clouds adds asrd#vel of realism to the
visual experience. We control the evolution of a cloud byatijg the transparency
level of sprites. To do this, we calculate a transparencipfaand multiply it into the
alpha from the shading equations for each vertex.

We decide the transparency factor based on the sprite’igrosiithin the cloud.
When a cloud is beginning to form, we render only the spriteese center is within
half of the cloud radius from the cloud center, and we rendemtwith a high trans-
parency level that we decrease over time. After they hawehezha threshold opacity,

Figure 5: Scene showing 3 of our 10 cloud types: a lower lafstratus, middle layer
of cumulus congestus, and high layer of altocumulus.

we begin to render sprites whose center is over half of thedctadius from the cloud
center.

Cloud dissipation is simulated by reversing the processfilseincrease the trans-
parency of sprites whose centers are greater than half ¢lie chdius from the cloud
center. When they have faded away completely, we increas&dhsparency of the
sprites within half the cloud radius, with a greater tramepay for sprites nearer the
cloud edges. A sequence can be seen in Figures 7, 8, 9.

5 Cloud Shading

Previous research on cloud shading have calculated singlenaltiple scattering of
light reflecting off particles within the cloud. We chose tseusimpler calculations
based on artist settings that yield a reasonable approximébregoing some lighting
effects in exchange for more artistic control and feweriraatcomputations.

The two factors that go into our cloud shading system areigky &nd sunlight.

5.1 Approximation of Scattered Sky Light

As rays of light pass from the sky through the cloud, they aedtered and filtered by
the particles within the cloud. As a result, clouds typigdlave darker bottoms. To
simulate this, our artists use a color picker in 3D Studio tesspecify 5 "color levels”
for each cloud. The color level consists of a height on thedlwith an associated
RGBA color. These levels are exported in the cloud desongdile. (See Figure 10).
The artists can also use these ambient color levels to mieeldistinct cloud types.
They set the color levels on stratus clouds to light gray,r@ntbostratus a darker gray
for a more ominous appearance. Cumulonimbus clouds reaeiagk look from top

Figure 6: Sheet of 16 cloud sprite textures.

to bottom, while small cumulus humilis puffs are nearly onifly white. The artist
can also adjust the alpha values to make some clouds type&straosparent, such as
stratus.

Separately, for a set of times throughout the day, the aviikspecify a percentage
value to be multiplied into the ambient color levels at eaafhtipular time of day. This
allows the ambient contribution to decrease approachigigtniVe allow more samples
around dawn and dusk.

When rendering a cloud during game execution, we calcuiatd ctorners of each
sprite after pivoting it to face the camera and determiniredfing due to close proxim-
ity to the camera. For each corner vertex, we take the véciizaponent of the position
and use it to interpolate between the vertical color lewelgdat an RGBA color. Inde-
pendently, we use the time of day to interpolate betweenritag af percentages over
the day. We multiply the RGBA color by the percentage to getambient color for
this sprite vertex at this time of day.

Given a vertexVy, Wy, V) at a time of dayl between timelg with color Crg and
time Ty with colorCy, letAr = % If Vy is between vertical color levet with color

Vi—Wy

v, - Then the ambient color calculation is
1—Vo

Tyo and leveN; with colorCy 1, letAy =
given by:

Camb = (Av xGyo + (1-Av) *Cy1) * (At *Cro+ (1-A7) *Cr1) (1)

Figure 7: Cloud prior to dissipation.

Figure 8: Cloud edges are fading out.

5.2 Approximation of Sunlight

The sun casts directional light on a cloud, which generai@sdtic scenes, especially
around dawn and dusk. We simulate the effect that areas afldlid facing the sun
receive more directional light while areas facing away fiti@ cloud receive less. We
do not simulate clouds casting shadows on themselves, dihwgdls, or other objects
in the scene.

Our artists specify shading groups, sections of 1 — 30 sptiitat are shaded as a
unit, when they build the clouds in 3D Studio Max from boxes.&ach box, they set a
custom user property with a shading group number, and spyéaerated for that box
will belong to that shading group. These shading groupslsirmelumps on the cloud.
We calculate the directional component of shading for argivertex in the cloud by
first computing the vector to that point from the shading groenter. We also find the
vector from the group center to the sun, and compute the ddugt of the two vectors
after normalization. See Figure 11.

Figure 9: Cloud is mostly faded out.

Figure 10: Ambient shading through vertical color levels.

We want to map the dot product from the rangé-tf1] to [Crin, Crax|, biasing the
result so thaf-1, 0] maps tdCrin, Crredian] @nd[0, 1] maps tdCredian, Cmax]- The reason
for biasing the result is to avoid a sharp transition froniitp dark down the middle
of the cloud. The result from the mapping function determitie percentage of the
maximum directional color for that vertex. The col@gin, Credian, Crmax are decided
by artists.

Artists specify directional colors for various times thgiwut the day, and we in-
terpolate between them to get the maximum directional catl@ given time of day.
We multiply this color by the percentage computed above.

Given a vertex at time of day between timély with color Crg and timeT; with
colorCyy, letAr = TT;:TTO as above. ¥4 denotes the normalized vector from the vertex
to the cloud center, and is the normalized vector from the cloud center to the sun,
then the directional color calculation is given by:

10

Figure 11: Directional shading.

Cair = mapping fun¢Vyc e Ves) * (At * Cro + (1-At) *Cry) (2

5.3 Combining the Shading Components

To get the final vertex color, we add the ambient and direaticolor to the color
from the sprite texture. At this point, we also multiply byethlpha value representing
formation or dissipation of the cloud\(phamr ph)-

Crertex = (Camb + Cair) * Grexture * Al phamor ph (3)

6 Performance

To be useful in real-time systems, our cloud rendering meisiese fast performance.
Our system is used within Microsoft Flight Simulator 2004igh maintains framer-
ates of 15 — 60 frames per second on a consumer PC, includysicgtand Al compu-
tations and all other rendering. Our requirements withightlSimulator necessitated
that we render a 100km radius of thick cumulonimbus cloudhiwi5 — 40 millisec-
onds. An additional requirement was that we maintain highfrates on low-end PCs
with older video cards, since a large percentage of the usse bun the product on
these types of machines.

The two main bottlenecks are vertex calculations on the CRIUf# rate due to
overdraw on the GPU. To address the former, we cache vertexatons, and for the
latter, we employ impostor textures.

6.1 Caching Vertex Calculations

Because our sprites turn to face the camera, a change in therggosition causes
recalculation of the sprite vertices, which in turn regsirecomputing the ambient

11

and directional shading values. Recalculating a scene @fthkiuds can take up to 3
milliseconds.

We mitigate this cost by caching computations and recdicigjanly when the time
elapsed or the camera position delta exceeds thresholdsvalinese values are based
on the distance of the cloud to the camera, because rotatioaages in nearby sprites
are more visually noticeable than changes in distant spié tweaked the thresholds
to ensure they were not large enough to cause visual poppleglso recompute more
frequently when the cloud is forming or dissipating.

6.2 Reducing Overdraw with Impostors

The heavy amount of overdraw in the clouds presents an apptyrto improve per-
formance. We use the impostor technique [Sch95] of dyndimitendering multiple
clouds into a texture that we then display as a billboarde (8gure 12.) This reduces
overdraw as well as the number of triangles being rendered.

Figure 12: Rendering clouds onto an impostor.

We create an octagonal ring of impostor textures around &neeca, each with
a 45-degree field of view. We can render hundreds of cloudsdrgingle impostor.
Our system compares clouds in 16 square kilometer blockastghe ring radius, and
renders only the blocks beyond the radius into impostoreoulblocks within the
radius are rendered as individual sprites. (See FigureTl8s)reduces video memory
requirements since creating impostors for nearby cloudddvwequire larger textures
to maintain the level of detail.

Our system allows the user to set the radius for the ring, lvp@ses a tradeoff. A
smaller ring radius signifies that more clouds are renderxdthe impostors, which
boosts framerate, but there are more noticeable visual aliesn (See section 7.) A
larger ring radius means that there is less performancefgaimthe impostors since
fewer clouds are rendered into them, but there are fewer ali@snand the impostors
can be updated less frequently.

12

Figure 13: Ring of impostors around the camera. Clouds witté ring are rendered
in 3-d.

We render the 8 impostors in fixed world positions facing theter of the ring, and
recreate them when the camera or sun position has changetifgeshold values. We
recalculate all 8 rather than a lazy recomputation, so ti&irhpostors are available
if the user suddenly changes the camera orientation. Erapiésults show that the
user can move through 15% of the impostor ring radius hotatynor 2% of the ring
radius vertically before recalculation becomes necessary

To prevent variability in framerate from the overhead ofdering to impostors, we
spread out the impostor calculation over multiple frames.Wdeo cards that support
it, we do a hardware render-to-texture into a 32-bit textuite alpha over 8 frames,
one for each impostor. For the other video cards, we useaaatrasterizer to render
into the texture over dozens of frames, one 16 square kiknaetiud block per frame.
When we update to a new set of impostors, we crossfade betiveéwo sets.

We translate the impostor texture vertically up or down dasethe angle between
the clouds and the camera. When the clouds are displaced themelQ000 feet
vertically from the camera, we stop rendering them into istps because the view
angle is too sharp. In this situation, the clouds are furdveay and take up less space
on the screen, so there is less overdraw and performancsuffibys slightly from not
rendering into impostors.

Since video memory is frequently a tight resource on consifs, we designed
the impostor system to have low video memory usage. Our fi8grapostors, each a
256 x 256 texture with 32-bit color, adds up to a video memast of 8« 256x 256x
4 = 2 megabytes uncompressed. When crossfading, both imposgsrare rendered,
which adds another 2 megabytes during the transition.

6.3 Performance Results

Our cloud system is implemented using the DirectX API on Wind PC systems.
We found that framerate is correlated to both the number nfespand their sizes.
We created a metric that we call the "cloud block overdrawfijck we calculate by
summing the sizes of all sprites in a 16 square kilometenddoa diving by the two-

13

dimensional area of that block.

We ran three cloud scenarios in Microsoft Flight Simulasparse clouds with an
overdraw of 170%, scattered clouds with an overdraw of 200% overcast skies with
an overdraw of 475%. We ran each scenario with and withoubstgus, at a resolution
of 1024 x 768 with 32-bit color.

Figure 14: Thick overcast layer covering the sky.

A graph of the results is shown in Figure 15. As we can see, stgpe dramatically
improve performance on lower-end systems, more so thanstarfmachines where
fill rate is less of a limiting factor. Across both machineg are able to achieve 15
to 60 frames per second with impostors, maintaining higméwrates even in overcast
scenarios, which have traditionally been challenging feoperformance standpoint.
We show a screenshot of the overcast scene we used in Figure 14

Performance of Cloud System

T 1o Machine A (1.7
4] --& - Machine .
g1 N GHz) without
Q 100 impostors
-§ 80 N —4—Machine A (1.7
o 90 S ; GHz) with
£ 40 e impostors
S 20 3 % | a Machine B (733
0 : MHz) without
impostors
170% 200% 475%
—=— Machine B (733
(Sparse) (Scattered) (Overcast) MHz) with
Overdraw (Cloud Coverage) impostors

Figure 15: Chart comparing performance with and withoutdstprs, on two systems.

14

7 Limitations and Extensions

We separate this section into cloud modeling, animatiorséiading, performance, and
extensions to other visuals.

7.1 Modéding

Our system is well suited for creating voluminous clouddéss suited for creating flat
clouds. Of the four basic cloud types — cumulus, stratus uanimbus, and cirrus, our
system easily handles the first three but has difficulty wittus clouds because they
are so flat as to be almost two-dimensional. To replicategitfouds in our system, we
would need a large number of sprites, which would cause apaénce hit. Instead,
our system represents cirrus clouds with flat textured negbés.

Because sprites within each cloud are sorted back-to-fsagéd on distance to
the camera, moving the camera can occasionally result ipipg@s sprites switch
positions in the draw order. This is more noticeable at dawechdusk when directional
shading plays a greater role. One potential solution woelddbsave the previous
ordering and fade between sprites when their order chanlgesur experience, the
popping was not jarring enough to necessitate this solution

Our in-cloud experience sometimes does not appear as deose avould expect.
One scenario is when the user flies through wispy clouds comised of relatively
few sprites. When the camera is at the cloud’s center, orlydfighe sprites lie in
front of the camera, so that the cloud is half as opaque as thireuser viewed it from
the outside. However, in real life, often the cloud appeasstropaque at its center.

Another situation in which the in-cloud experience appé&arson-opaque is when
the user changes the camera orientation. Suppose the ubgngsparallel to the
ground. When he moves close enough to the sprites, they toak brientation per-
pendicular to the ground. If he looks down, he will now segéagaps between the
sprites. A potential solution is to detect when the user Inésred into the core of the
cloud and combine an additive fogging effect with our erigtin-cloud experience.

7.2 Animation and Shading

Currently clouds do not change shape except for formatiahdissipation. In real
life, air flow causes clouds to morph over time. We can sineuthts by rotating or
translating sprites within the cloud, giving the impressibat wisps are moving and
tumbling with the wind. As groups of sprites are translatid,cloud could condense
into itself or break apart into several pieces. We could &sie individual sprites in
and out to alter the overall shape of the cloud.

Because our shading model does not simulate the scattdriilgho clouds do not
cast shadows on themselves or neighboring clouds. Andtlaglirsg inaccuracy is that
directional shading is measured based on angle to the suer thian density of cloud
mass that the light has passed through. For example, we dgehathalo effect when
the cloud is between the sun and the camera. One potentigicsothat fixes both of
these problems is to pre-calculate the lit and shadowedmegf the cloud for a set

15

of sun angles. We can load this information at runtime anerpdlate based on sun
angle.

7.3 Performance

Overdraw accounts for much of the cost of rendering our dpad the framerate can
vary based on how much of the scene is taken up by clouds. Wieeratnera moves
into a cloud, there is a higher amount of overdraw, and framegiends to drop. One
way to alleviate this is to detect when the camera has mowdera cloud using the
bounding box of the sprites, and to add a fog effect. This dailbw us to draw fewer

clouds in the distance.

Using a ring of impostors can create visual anomalies. Ssppivat beyond the
impostor ring radius lies a mountain surrounded by cloud®s€ clouds are rendered
into a single ring of impostors, so that the mountain mustvdeiher in front of or
behind all the clouds, rather than behind some clouds andoimt bf others. This
can be mitigated by adding more rings of impostors, but thergiases video memory
usage.

Impostors can also look wrong due to lack of parallax. Thed#oin the impostor
do not move relative to each other. Their motion also looksdurate relative to the
clouds within the impostor ring radius that are renderecdhdvidual sprites.

An area for future work is to take advantage of newer hardwaigk implement
some of our techniques using vertex shaders. We have nooyet sb because our
application supports a user base with a wide spectrum of meshmany of which
have video cards that do not support hardware vertex shaders

7.4 Extensionsto Other Visuals

Our system can be extended to other gaseous phenomena,sstaiy amoke, and
fire. Fog is a natural candidate, since it is essentially a\strlayer placed close to
the ground. The problem is that hard lines can be seen wherspttites intersect
the ground polygons, which can be alleviated either bytspiitthe sprites along the
ground or multiplying by a one-dimensional alpha textursdabon the altitude.

To extend our system for simulating smoke, we would use dawkspier sprites.
Since smoke is more fluid and moves faster than clouds, wedredsth need to enhance
the movement, potentially by adding some air flow simulation

8 Acknowledgements
This work was made possible by the artistic contributiondodin W. Smith and Adrian

Woods. We also thank Jason Waskey, Carl Edlund, Eric Hai@kss Prince, lan
Pieragostini, Jim Blinn, Mark Harris, and the MicrosoftdHt Simulator team.

16

9 Web Information

The figures in this paper, along with additional screenshnotka link to a short video
demonstrating the techniques, are available online athttpw.acm.org/jgt/papers/Wang03.

References

[Blig2] J Blinn. Light reflection functions for simulationfaclouds and dusty
surfaces. InComputer Graphics (Proceedings of ACM SIGGRAPH 82),
Computer Graphics Proceedings, Annual Conference Spagss 21—-29.
ACM, ACM Press / ACM SIGGRAPH, 1982.

[DKY *00] Y Dobashi, K Kaneda, H Yamashita, T Okita, and T Nishitasigple,
efficient method for realistic animation of clouds. Proceedings of ACM
SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference
Series, pages 19-28. ACM, ACM Press / ACM SIGGRAPH, 2000.

[DNYO99] Y Dobashi, T Nishita, H Yamashita, and T Okita. Ugimetaballs to
modeling and animate clouds from satellite images. 15793492, 1999.

[Ebe97] D S Ebert. Volumetric modeling with implicit funotis: A cloud is born.
In Visual Proceedings of ACM SIGGRAPH 1997, Computer Graphics Pro-
ceedings, Annual Conference Series, page 147. ACM, ACMsHIAEM
SIGGRAPH, 1997.

[ES00] P Elinas and W Stuerzlinger. Real-time renderingdt®uds. Journal
of Graphics Tools, 5(4):33-45, 2000.

[Har03] Mark Harris. Real-Time Cloud Smulation and Rendering. PhD thesis,
University of North Carolina at Chapel Hill, 2003.

[HLO1] M Harris and A Lastra. Real-time cloud rendering.Gomputer Graphics
Forum, volume 20, pages 76—84. Blackwell Publishers, 2001.

[NDN96] T Nishita, Y Dobashi, and E Nakamae. Display of cleudking into ac-
count multiple anisotropic scattering and sky lightPimceedings of ACM
SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Se-
ries, pages 379-386. ACM, ACM Press / ACM SIGGRAPH, 1996.

[Per85] K Perlin. An image synthesizer. Gomputer Graphics (Proceedings of
ACM SIGGRAPH 85), Computer Graphics Proceedings, Annual Confer-
ence Series, pages 287-296. ACM, ACM Press / ACM SIGGRAPBK 19

[Sch95] G Schaufler. Dynamically generated imposters. Mbdeling Virtual
Worlds - Distributed Graphics, MVD Workshop, pages 129-136, 1995.

17

