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Abstract

Clouds are an important aspect of rendering outdoor scenes.This paper de-
scribes a cloud system that extends texture splatting on particles to model a dozen
cloud types (e.g., stratus, cumulus congestus, cumulonimbus), an improvement
over earlier systems that modeled only one type of cumulus. We also achieve fast
real-time rendering, even for scenes of dense overcast coverage, which was a lim-
itation for previous systems.

We present a new shading model that uses artist-driven controls rather than a
programmatic approach to approximate lighting. This is suitable when fine-grained
control over the look-and-feel is necessary, and artistic resources are available. We
also introduce a way to simulate cloud formation and dissipation using texture
splatted particles.

1 Introduction

Figure 1: Scene of realistic clouds at sunset.

1



Clouds play an important role in simulating outdoor environments. Realistic-looking
clouds can be one of the most compelling graphical components of outdoor scenes, es-
pecially for real-world applications such as flight simulators and movie productions.

In interactive real-world applications, cloud systems must look realistic from any
camera position and must scale to handle the wide spectrum ofcloud types (e.g., stratus,
cumulus congestus) and coverages (e.g., sparse, broken, overcast) that exist in real
life. For example, our cloud system ships with Microsoft Flight Simulator 2004: A
Century of Flight, which allows users to download real-world weather and see current
conditions reflected in the game graphics. One design constraint on our system was
that it must yield high-quality results for all scenarios that occur in the real world, from
wispy stratus clouds to overcast thunderstorm skies.

To be useful for practical interactive applications, our system must maintain ag-
gressive performance. Using Flight Simulator as an example, the game operates at
high framerates while performing computations for numerous systems besides cloud
rendering, such as physics, AI, and terrain rendering. Therefore, our cloud modeling
must maintain low render times of milliseconds. Additionally, it must achieve fast per-
formance even on low-end PCs, which represent the hardware constraints for a large
percentage of the user base.

The appearance of clouds is affected by the light cast by the sun and filtered from
the sky, which must be reflected in the cloud shading. Our system targets applications
that require fine-grained control over the look-and-feel and have artistic resources avail-
able, such as movie productions and computer games.

In the real world, clouds do not remain static. They move across the sky, form
in areas of moisture and unstable air, and dissipate when these conditions abate. To
simulate these changes, our cloud rendering method must include a mechanism for
forming and dissipating clouds in a realistic manner over time.

In this paper, we present a cloud rendering system that addresses all of the above.
We use texture splatting on particles to create ”puffs” in the cloud, which allows us
to model a dozen cloud types such as nimbostratus and altocumulus, an improvement
over previous systems that modeled one type of cumulus cloud. We use an octagonal
ring of impostors to achieve fast performance, even for scenes of dense overcast cloud
cover, which have traditionally proven to be a challenge. Toapproximate sky and sun
light, we use a simple efficient shading model. Finally, our approach allows us to
dynamically evolve the cloud into existence or fade parts ofit away.

Section 2 reviews the background and previous work. Section3 describes our tech-
nique, and section 4 explains how our system dynamically forms and dissipates clouds.
Section 5 covers our shading methods, and section 6 presentsperformance metrics and
results. Section 7 describes our experiences, algorithmiclimitations, and directions for
future work.

A short video demonstrating the cloud system is available online at the web address
listed at the end of this paper.

2 Previous Work

Many techniques have been used to model, animate, and renderclouds.
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[Per85] modeled cloud volumes by filling them with procedural solid noise tech-
niques, and [ES00] extended this to model clouds in real-time using textured ellipsoids.
[DKY +00] used metaballs — also called blobs — to realistically model cloud shapes
based on atmospheric conditions. With programmatic approaches, it is often difficult
to achieve an exact desired result, as the creation process involves tweaking equation
parameters rather than directly adjusting the visual model.

To create clouds that change dynamically, [DNYO99] used voxels with forms of
cellular automata. [Ebe97] combined volume rendering and a-buffer rendering tech-
niques to animate gaseous phenomena based on turbulent flow.These systems pro-
duced beautiful images but were not real-time.

Shading has also been explored in various systems. [Bli82] pioneered work on
cloud shading by introducing a single scattering model of light reflected by uniform
small particles. [NDN96, Har03] simulated multiple anisotropic scattering of light
from particles in the cloud as well as sky light. These systems created accurate shad-
ing. When designing our system, we made the tradeoff of accepting small shading
inaccuracies in exchange for fewer computations and higherartistic control.

Many flight simulation games feature clouds. Recent examples are Flight Simu-
lator 2002, IL-2 Sturmovik, and Combat Flight Simulator III. In games, a common
approach is to paint clouds onto the skybox texture. This places almost no overhead
on performance but the clouds do not look three-dimensionaland never get closer as
the camera moves. Another solution is to use a single sprite per cloud, which looks
realistic from a stationary camera but produces anomalies as the camera rotates around
it. A couple of recent approaches use clusters of texture splatted particles similar to
our system. Some use unique textures for every cloud, which has a high video memory
cost as the number of clouds in the scene increases. Other systems use small blurry tex-
tures, which creates clouds that look volumetric but lack definition (small details that
resemble wisps and eddies). These systems also lack the ability to form and dissipate
clouds.

Our work is most closely related to [HL01, Har03], a real-time system that built
volumetric clouds from texture splatted particles, with a uniform Gaussian blob tex-
ture. Harris internalciteHarris:2003 dynamically generated an impostor for each cloud,
and achieved framerates of 1 - 500 frames per second. The system also modeled the
fluid motion and thermodynamic forces behind cloud animation. Our system differs
in that we can render large clouds such as cumulonimbus, as well as scenes of over-
cast clouds, which had prohibitively high video memory costs in Harris internalcite-
Harris:2003’s system, since large clouds require large impostors. We also tackle the
additional problem of scaling to multiple cloud types.

3 Cloud Modeling

Our cloud rendering technique renders each cloud as 5 to 400 alpha-blended tex-
tured sprites. The sprites face the camera during renderingand together comprise a
3-dimensional volume. We render them back-to-front based on distance to the camera.
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Figure 2: Frontal view of a single cloud with sprites outlined.

3.1 Cloud Creation Process

We designed our authoring process to give artists fine-grained control over the final
look of the cloud model, with immediate visual feedback during editing. We chose not
to use a more automated approach to programmatically generate the cloud models, as
our experiences with them indicated that getting a particular desired effect was difficult
since it involved tweaking parameters in equations whose effect on the visual model
was less directly controllable. Our choice requires the availability of artists, which is
true for our applications such as games and movie productions.

We wrote a plug-in to 3D Studio Max that allows artists to denote a cloud shape
by creating and placing a series of boxes. When they press a button in our plug-in UI,
the plug-in populates the boxes with randomly placed sprites. See Figures 3 and 4.
The artist can control the number of sprites to create denseror wispier clouds. He also
specifies ranges for the width and height of the sprites. In the clouds we created, the
majority of sprites are square, though we used some wide, short sprites to create hazy
areas since their texture gets stretched horizontally.

There are generally 20 – 200 boxes for each 16 square kilometer section of clouds,
and 1 – 100 sprites per box depending on the cloud density. TheUI allows the artist
to specify the aforementioned sprite dimensions and density, along with the textures to
use and other cloud properties.

After creating a list of randomly placed sprite centers, thetool traverses the list
and eliminates any sprite whose 3-D distance to another sprite is less than a threshold
value. This reduces overdraw in the final rendering, and alsoeliminates redundant
sprites created from overlapping boxes. We have found that acull radius of 1

3 of the
sprite height works well for typical clouds, and1

5 ... 1
6 of the sprite height yields dense

clouds.
After the artist edits the clouds, he uses a custom written exporter to create a bi-

nary file containing the sprite center locations, rotations, width, and height, along with
texture and shading information. These files are loaded during game execution and
rendered.
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Figure 3: Boxes in 3D Studio Max representing a square regionof clouds.

3.2 Textures

We mix-and-match 16 textures to create a dozen distinct cloud types. Three of our
cloud types can be seen in Figure 5.

The 16 textures can be seen in Figure 6. They are 32-bit, and used for both color
and alpha. The flat-bottomed texture in the upper righthand corner is used to create flat
bottoms in cumulus clouds. The three foggy textures in the top row are used heavily in
stratus clouds and have a subtle bluish-grey tinge. The six puffy textures in the bottom
two rows give interesting nuances to cumulus clouds, and theremaining six are wispy
sprites that are used across all cloud types.

By creating interesting features inside the textures that resemble eddies and wisps,
we are able to create more realistic looking clouds with fewer sprites. We keep the
video memory cost low by placing all 16 textures on a single 512x512 texture sheet,
which spares the cost of switching textures between drawingcalls to the video card.
Economizing video memory is important for performance on low-end PCs running
video cards with 8 or 16 megabytes of memory, and we achieve a significantly lower
cost as compared to other cloud systems which use a differenttexture for every cloud.

To create more variation from these 16 textures, the artist specifies a minimum and
maximum range of rotation for each sprite. When the binary file is loaded into the
game, the sprite is given a random rotation within the range.We have found that it
looks best to give the cumulus cloud bottoms a narrow range (-5 to 5 degrees) and all
other sprites the full range of rotation (0 to 360 degrees). We do not apply a rotation to
non-square sprites.

3.3 In-cloud Experience

Our approach generates a natural in-cloud experience wherethe camera appears to be
passing through puffs of the cloud. As the camera passes through a sprite, the sprite
immediately disappears from view. This ceates a consistentin-cloud experience, in
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Figure 4: After running our script, the boxes from Figure 3 are filled in with textured
sprites.

contrast to the sometimes jarring transition that occurs with the technique of playing a
canned animation when the user flies into the cloud.

When we first implemented our solution, we had the sprites always face the camera
so that they would not be seen edge-on. However, during the in-cloud experience, the
camera was so close to the sprite center that small movementsin the camera position
caused large rotations of the cloud sprite. This resulted ina ”parting of the Red Sea”
effect as sprites moved out of the way of the oncoming camera.

Our solution is to lock the facing angle of the sprite when thecamera comes within
half of the sprite radius. This removes the Red Sea effect, but creates a new problem
when the camera moves close to the sprite, causing it to lock,and then pivots around
until the sprite can be seen edge-on. We experimented with detecting this situation and
shifting the sprite to a new locked orientation, but it causes a noticeable jump right
as the user passes through the sprite. Our solution is to detect the angle between the
sprite’s locked orientation and the vector to the camera, and adjust the transparency
of the sprite, which also produces the side effect of making that section of the cloud
appear less opaque.

4 Cloud Formation and Dissipation

Enabling the formation and dissipation of clouds adds another level of realism to the
visual experience. We control the evolution of a cloud by adjusting the transparency
level of sprites. To do this, we calculate a transparency factor and multiply it into the
alpha from the shading equations for each vertex.

We decide the transparency factor based on the sprite’s position within the cloud.
When a cloud is beginning to form, we render only the sprites whose center is within
half of the cloud radius from the cloud center, and we render them with a high trans-
parency level that we decrease over time. After they have reached a threshold opacity,
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Figure 5: Scene showing 3 of our 10 cloud types: a lower layer of stratus, middle layer
of cumulus congestus, and high layer of altocumulus.

we begin to render sprites whose center is over half of the cloud radius from the cloud
center.

Cloud dissipation is simulated by reversing the process. Wefirst increase the trans-
parency of sprites whose centers are greater than half the cloud radius from the cloud
center. When they have faded away completely, we increase the transparency of the
sprites within half the cloud radius, with a greater transparency for sprites nearer the
cloud edges. A sequence can be seen in Figures 7, 8, 9.

5 Cloud Shading

Previous research on cloud shading have calculated single and multiple scattering of
light reflecting off particles within the cloud. We chose to use simpler calculations
based on artist settings that yield a reasonable approximation, foregoing some lighting
effects in exchange for more artistic control and fewer runtime computations.

The two factors that go into our cloud shading system are sky light and sunlight.

5.1 Approximation of Scattered Sky Light

As rays of light pass from the sky through the cloud, they are scattered and filtered by
the particles within the cloud. As a result, clouds typically have darker bottoms. To
simulate this, our artists use a color picker in 3D Studio maxto specify 5 ”color levels”
for each cloud. The color level consists of a height on the cloud with an associated
RGBA color. These levels are exported in the cloud description file. (See Figure 10).

The artists can also use these ambient color levels to model the distinct cloud types.
They set the color levels on stratus clouds to light gray, andnimbostratus a darker gray
for a more ominous appearance. Cumulonimbus clouds receivea dark look from top
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Figure 6: Sheet of 16 cloud sprite textures.

to bottom, while small cumulus humilis puffs are nearly uniformly white. The artist
can also adjust the alpha values to make some clouds types more transparent, such as
stratus.

Separately, for a set of times throughout the day, the artistwill specify a percentage
value to be multiplied into the ambient color levels at each particular time of day. This
allows the ambient contribution to decrease approaching night. We allow more samples
around dawn and dusk.

When rendering a cloud during game execution, we calculate the 4 corners of each
sprite after pivoting it to face the camera and determining locking due to close proxim-
ity to the camera. For each corner vertex, we take the vertical component of the position
and use it to interpolate between the vertical color levels to get an RGBA color. Inde-
pendently, we use the time of day to interpolate between the array of percentages over
the day. We multiply the RGBA color by the percentage to get the ambient color for
this sprite vertex at this time of day.

Given a vertex(Vx,Vy,Vz) at a time of dayT between timeT0 with colorCT0 and
timeT1 with colorCT1, letAT = T1–T

T1–T0
. If Vy is between vertical color levelV0 with color

TV0 and levelV1 with colorCV1, let AV =
V1–Vy
V1–V0

. Then the ambient color calculation is
given by:

Camb = (AV ∗CV0 +(1–AV )∗CV1)∗ (AT ∗CT0 +(1–AT )∗CT1) (1)
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Figure 7: Cloud prior to dissipation.

Figure 8: Cloud edges are fading out.

5.2 Approximation of Sunlight

The sun casts directional light on a cloud, which generates dramatic scenes, especially
around dawn and dusk. We simulate the effect that areas of thecloud facing the sun
receive more directional light while areas facing away fromthe cloud receive less. We
do not simulate clouds casting shadows on themselves, otherclouds, or other objects
in the scene.

Our artists specify shading groups, sections of 1 – 30 sprites that are shaded as a
unit, when they build the clouds in 3D Studio Max from boxes. On each box, they set a
custom user property with a shading group number, and sprites generated for that box
will belong to that shading group. These shading groups simulate clumps on the cloud.
We calculate the directional component of shading for a given vertex in the cloud by
first computing the vector to that point from the shading group center. We also find the
vector from the group center to the sun, and compute the dot product of the two vectors
after normalization. See Figure 11.
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Figure 9: Cloud is mostly faded out.

Figure 10: Ambient shading through vertical color levels.

We want to map the dot product from the range of[-1,1] to [Cmin,Cmax], biasing the
result so that[-1,0] maps to[Cmin,Cmedian] and[0,1] maps to[Cmedian,Cmax]. The reason
for biasing the result is to avoid a sharp transition from light to dark down the middle
of the cloud. The result from the mapping function determines the percentage of the
maximum directional color for that vertex. The colorsCmin,Cmedian,Cmax are decided
by artists.

Artists specify directional colors for various times throughout the day, and we in-
terpolate between them to get the maximum directional colorat a given time of day.
We multiply this color by the percentage computed above.

Given a vertex at time of dayT between timeT0 with colorCT0 and timeT1 with
colorCT1, letAT = T1–T

T1–T0
as above. IfVvc denotes the normalized vector from the vertex

to the cloud center, andVcs is the normalized vector from the cloud center to the sun,
then the directional color calculation is given by:
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Figure 11: Directional shading.

Cdir = mapping func(Vvc •Vcs)∗ (AT ∗CT0 +(1–AT )∗CT1) (2)

5.3 Combining the Shading Components

To get the final vertex color, we add the ambient and directional color to the color
from the sprite texture. At this point, we also multiply by the alpha value representing
formation or dissipation of the cloud (Alphamorph).

Cvertex = (Camb +Cdir)∗Ctexture ∗Alphamorph (3)

6 Performance

To be useful in real-time systems, our cloud rendering must achieve fast performance.
Our system is used within Microsoft Flight Simulator 2004, which maintains framer-
ates of 15 – 60 frames per second on a consumer PC, including physics and AI compu-
tations and all other rendering. Our requirements within Flight Simulator necessitated
that we render a 100km radius of thick cumulonimbus clouds within 5 – 40 millisec-
onds. An additional requirement was that we maintain high framerates on low-end PCs
with older video cards, since a large percentage of the user base run the product on
these types of machines.

The two main bottlenecks are vertex calculations on the CPU and fill rate due to
overdraw on the GPU. To address the former, we cache vertex calculations, and for the
latter, we employ impostor textures.

6.1 Caching Vertex Calculations

Because our sprites turn to face the camera, a change in the camera position causes
recalculation of the sprite vertices, which in turn requires recomputing the ambient
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and directional shading values. Recalculating a scene of 500 clouds can take up to 3
milliseconds.

We mitigate this cost by caching computations and recalculating only when the time
elapsed or the camera position delta exceeds threshold values. These values are based
on the distance of the cloud to the camera, because rotational changes in nearby sprites
are more visually noticeable than changes in distant sprites. We tweaked the thresholds
to ensure they were not large enough to cause visual popping.We also recompute more
frequently when the cloud is forming or dissipating.

6.2 Reducing Overdraw with Impostors

The heavy amount of overdraw in the clouds presents an opportunity to improve per-
formance. We use the impostor technique [Sch95] of dynamically rendering multiple
clouds into a texture that we then display as a billboard. (See Figure 12.) This reduces
overdraw as well as the number of triangles being rendered.

Figure 12: Rendering clouds onto an impostor.

We create an octagonal ring of impostor textures around the camera, each with
a 45-degree field of view. We can render hundreds of clouds into a single impostor.
Our system compares clouds in 16 square kilometer blocks against the ring radius, and
renders only the blocks beyond the radius into impostors. Cloud blocks within the
radius are rendered as individual sprites. (See Figure 13.)This reduces video memory
requirements since creating impostors for nearby clouds would require larger textures
to maintain the level of detail.

Our system allows the user to set the radius for the ring, which poses a tradeoff. A
smaller ring radius signifies that more clouds are rendered into the impostors, which
boosts framerate, but there are more noticeable visual anomalies. (See section 7.) A
larger ring radius means that there is less performance gainfrom the impostors since
fewer clouds are rendered into them, but there are fewer anomalies, and the impostors
can be updated less frequently.
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Figure 13: Ring of impostors around the camera. Clouds within the ring are rendered
in 3-d.

We render the 8 impostors in fixed world positions facing the center of the ring, and
recreate them when the camera or sun position has changed past threshold values. We
recalculate all 8 rather than a lazy recomputation, so that the impostors are available
if the user suddenly changes the camera orientation. Empirical results show that the
user can move through 15% of the impostor ring radius horizontally or 2% of the ring
radius vertically before recalculation becomes necessary.

To prevent variability in framerate from the overhead of rendering to impostors, we
spread out the impostor calculation over multiple frames. For video cards that support
it, we do a hardware render-to-texture into a 32-bit texturewith alpha over 8 frames,
one for each impostor. For the other video cards, we use a software rasterizer to render
into the texture over dozens of frames, one 16 square kilometer cloud block per frame.
When we update to a new set of impostors, we crossfade betweenthe two sets.

We translate the impostor texture vertically up or down based on the angle between
the clouds and the camera. When the clouds are displaced morethan 10,000 feet
vertically from the camera, we stop rendering them into impostors because the view
angle is too sharp. In this situation, the clouds are furtheraway and take up less space
on the screen, so there is less overdraw and performance onlysuffers slightly from not
rendering into impostors.

Since video memory is frequently a tight resource on consumer PCs, we designed
the impostor system to have low video memory usage. Our ring of 8 impostors, each a
256 x 256 texture with 32-bit color, adds up to a video memory cost of 8∗256∗256∗
4 = 2 megabytes uncompressed. When crossfading, both impostorrings are rendered,
which adds another 2 megabytes during the transition.

6.3 Performance Results

Our cloud system is implemented using the DirectX API on Windows PC systems.
We found that framerate is correlated to both the number of sprites and their sizes.
We created a metric that we call the ”cloud block overdraw”, which we calculate by
summing the sizes of all sprites in a 16 square kilometer block and diving by the two-
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dimensional area of that block.
We ran three cloud scenarios in Microsoft Flight Simulator:sparse clouds with an

overdraw of 170%, scattered clouds with an overdraw of 200%,and overcast skies with
an overdraw of 475%. We ran each scenario with and without impostors, at a resolution
of 1024 x 768 with 32-bit color.

Figure 14: Thick overcast layer covering the sky.

A graph of the results is shown in Figure 15. As we can see, impostors dramatically
improve performance on lower-end systems, more so than on faster machines where
fill rate is less of a limiting factor. Across both machines, we are able to achieve 15
to 60 frames per second with impostors, maintaining high framerates even in overcast
scenarios, which have traditionally been challenging froma performance standpoint.
We show a screenshot of the overcast scene we used in Figure 14.

Figure 15: Chart comparing performance with and without impostors, on two systems.
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7 Limitations and Extensions

We separate this section into cloud modeling, animation andshading, performance, and
extensions to other visuals.

7.1 Modeling

Our system is well suited for creating voluminous clouds butless suited for creating flat
clouds. Of the four basic cloud types – cumulus, stratus, cumulonimbus, and cirrus, our
system easily handles the first three but has difficulty with cirrus clouds because they
are so flat as to be almost two-dimensional. To replicate cirrus clouds in our system, we
would need a large number of sprites, which would cause a performance hit. Instead,
our system represents cirrus clouds with flat textured rectangles.

Because sprites within each cloud are sorted back-to-frontbased on distance to
the camera, moving the camera can occasionally result in popping as sprites switch
positions in the draw order. This is more noticeable at dawn and dusk when directional
shading plays a greater role. One potential solution would be to save the previous
ordering and fade between sprites when their order changes.In our experience, the
popping was not jarring enough to necessitate this solution.

Our in-cloud experience sometimes does not appear as dense as one would expect.
One scenario is when the user flies through wispy clouds compromised of relatively
few sprites. When the camera is at the cloud’s center, only half of the sprites lie in
front of the camera, so that the cloud is half as opaque as whenthe user viewed it from
the outside. However, in real life, often the cloud appears most opaque at its center.

Another situation in which the in-cloud experience appearstoo non-opaque is when
the user changes the camera orientation. Suppose the user isflying parallel to the
ground. When he moves close enough to the sprites, they lock in an orientation per-
pendicular to the ground. If he looks down, he will now see large gaps between the
sprites. A potential solution is to detect when the user has entered into the core of the
cloud and combine an additive fogging effect with our existing in-cloud experience.

7.2 Animation and Shading

Currently clouds do not change shape except for formation and dissipation. In real
life, air flow causes clouds to morph over time. We can simulate this by rotating or
translating sprites within the cloud, giving the impression that wisps are moving and
tumbling with the wind. As groups of sprites are translated,the cloud could condense
into itself or break apart into several pieces. We could alsofade individual sprites in
and out to alter the overall shape of the cloud.

Because our shading model does not simulate the scattering of light, clouds do not
cast shadows on themselves or neighboring clouds. Another shading inaccuracy is that
directional shading is measured based on angle to the sun rather than density of cloud
mass that the light has passed through. For example, we do notget a halo effect when
the cloud is between the sun and the camera. One potential solution that fixes both of
these problems is to pre-calculate the lit and shadowed regions of the cloud for a set
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of sun angles. We can load this information at runtime and interpolate based on sun
angle.

7.3 Performance

Overdraw accounts for much of the cost of rendering our clouds, so the framerate can
vary based on how much of the scene is taken up by clouds. When the camera moves
into a cloud, there is a higher amount of overdraw, and framerate tends to drop. One
way to alleviate this is to detect when the camera has moved inside a cloud using the
bounding box of the sprites, and to add a fog effect. This would allow us to draw fewer
clouds in the distance.

Using a ring of impostors can create visual anomalies. Suppose that beyond the
impostor ring radius lies a mountain surrounded by clouds. Those clouds are rendered
into a single ring of impostors, so that the mountain must draw either in front of or
behind all the clouds, rather than behind some clouds and in front of others. This
can be mitigated by adding more rings of impostors, but that increases video memory
usage.

Impostors can also look wrong due to lack of parallax. The clouds in the impostor
do not move relative to each other. Their motion also looks inaccurate relative to the
clouds within the impostor ring radius that are rendered as individual sprites.

An area for future work is to take advantage of newer hardwareand implement
some of our techniques using vertex shaders. We have not yet done so because our
application supports a user base with a wide spectrum of machines, many of which
have video cards that do not support hardware vertex shaders.

7.4 Extensions to Other Visuals

Our system can be extended to other gaseous phenomena, such as fog, smoke, and
fire. Fog is a natural candidate, since it is essentially a stratus layer placed close to
the ground. The problem is that hard lines can be seen where the sprites intersect
the ground polygons, which can be alleviated either by splitting the sprites along the
ground or multiplying by a one-dimensional alpha texture based on the altitude.

To extend our system for simulating smoke, we would use darker, wispier sprites.
Since smoke is more fluid and moves faster than clouds, we would also need to enhance
the movement, potentially by adding some air flow simulation.
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9 Web Information

The figures in this paper, along with additional screenshotsand a link to a short video
demonstrating the techniques, are available online at http://www.acm.org/jgt/papers/Wang03.
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